Двухконтурный турбореактивный двигатель - определение. Что такое Двухконтурный турбореактивный двигатель
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Двухконтурный турбореактивный двигатель - определение

ТРДД; Двухконтурный турбореактивный двигатель; Ядерный турбореактивный двигатель; ЯТРД
  • ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.
  • ТРД в разрезе: <br />1. Забор воздуха<br /> 2. Компрессор низкого давления<br />3. Компрессор высокого давления<br /> 4. Камера сгорания<br /> 5. Расширение рабочего тела в турбине и сопле<br /> 6. Горячая зона<br /> 7. Турбина <br /> 8. Зона входа первичного воздуха в камеру сгорания <br /> 9. Холодная зона<br /> 10. Входное устройство
  • альт=
  • Схема одноконтурного турбореактивного двигателя
  • Принципиальная схема турбореактивного двухконтурного двигателя (ТРДД):<br> 1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контура
  • com2=раздел III «Авиационные двигатели», глава 4 «Конструктивные особенности ТРДД и ТРДДФ»}}</ref>
Найдено результатов: 221
Двухконтурный турбореактивный двигатель         
(ДТРД)

авиационный Воздушно-реактивный двигатель, в котором поступающий в него воздух делится на два потока, проходящих через внутренние и внешние контуры. Первый ДТРД с эжектором предложен в 1887 киевским изобретателем Ф. Р. Гешвендом. Первый ДТРД с вентилятором - в 1932 К. Э. Циолковским (См. Циолковский). В 1939 А. М. Люлька разработал проект ДТРД с компрессором и с разделением потоков воздуха на входе. В 1939 французский инженер Р. Аниксионназ и Р. Имберт предложили ДТРД с различным числом роторов вентилятора и компрессора внутреннего контура, как соединённых зубчатой передачей, так и механически не связанных. В 1947 советский инженер В. Ф. Павленко разработал проект ДТРД с разделением потоков воздуха за компрессором. ДТРД с теплообменником во внешнем контуре и с дополнительным газовым компрессором во внутреннем контуре между турбиной и реактивным соплом, предназначенным для снижения давления за турбиной ниже атмосферного, предложен в 1948 советский инженер М. Г. Дубинским, С. 3. Копелевым и А. О. Мацуком. В 1953 немецкий инженер К. Лейст получил патент на ДТРД с биротативным (т. е. имеющим внутренний и наружный ротор) компрессором внутреннего контура, у которого один из двух вращающихся в противоположном направлении роторов (наружный) несёт рабочие лопатки вентилятора внешнего контура. Тяга ДТРД складывается из сил реакции потоков воздуха и продуктов сгорания, получивших ускорение во внутреннем и внешнем контурах и вытекающих через два самостоятельных (рис. 1, а, в) или одно общее (рис. 1, б, г) Реактивное сопло. Внешний контур представляет собой кольцевой канал, в котором находится вентилятор или компрессор, располагающийся за турбокомпрессором (рис. 1, а) или перед ним (рис. 1, 6). Переднее расположение вентилятора даёт возможность использовать его для сжатия воздуха, поступающего во внутренний контур. ДТРД, у которых степень двухконтурности (отношение расходов воздуха через внешний и внутренний контур) больше единицы, принято называть турбовентиляторными двигателями. Степень двухконтурности различных типов ДТРД - от 0,5 до 8. Степень повышения давления воздуха в компрессоре внутреннего контура от 10 до 26, внешнего - от 1,5 до 2,5. Повышение температуры газа перед турбиной существенно улучшает характеристики ДТРД. У современных ДТРД она достигает 1600 К (см. Газотурбинный двигатель). Ротор ДТРД выполняется двухвальным, а иногда и трёхвальным (рис. 2) с разной частотой вращения каждого вала.

Основная особенность ДТРД состоит в том, что при одной и той же затрате энергии сообщается меньшее ускорение значительно большей массе воздуха, чем в обычном турбореактивном двигателе (См. Турбореактивный двигатель) (ТРД). Благодаря этому тяга на взлёте и в полёте с дозвуковой скоростью увеличивается, а удельный расход топлива уменьшается. У ДТРД со степенью двухконтурности 1 взлётная тяга на 25\% больше, чем у ТРД, с такой же тягой на скорости 1000 км/ч и существенно меньший шум, создаваемый реактивной струей благодаря меньшей её скорости. ДТРД широко применяются в СССР и за рубежом на дозвуковых, преимущественно пассажирских самолётах (например, Ил-62, Ту-134, "Боинг-727") и самолётах с вертикальными пли укороченными взлётом и посадкой. С увеличением скорости полёта более 1000 км/ч тяга ДТРД резко уменьшается из-за малой скорости реактивной струи. Для увеличения этой скорости сжигается дополнительное количество топлива во внешнем контуре (рис. 1, в) или в общей смесительной камере (рис. 1, г). Это делает выгодным применение ДТРД и на сверхзвуковых самолётах (см. также Авиационный двигатель).

Лит.: Стечкин В.С., Теория реактивных двигателей, М., 1958; Клячкин А. Л., Теория воздушно-реактивных двигателей, М., 1969: High speed aerodynamics and jet propulsion, v. 12, L., 1959.

С. З. Копелев.

Рис. 1. Схемы двухконтурного турбореактивного двигателя; расположение вентилятора: а - заднее, б - переднее; сжигание дополнительного топлива: в - во внешнем контуре, г - в общей смесительной камере; 1 - вентилятор (компрессор) внешнего контура; 2 и 21 - компрессор и турбина низкого давления; 3 - 31 - компрессор и турбина высокого давления; 4 - камера сгорания внутреннего контура; 5 - камера сгорания внешнего контура; 6 - форсунки дополнительного топлива; 7-71 - реактивное сопло внутреннего и внешнего контура.

Рис. 2. Схема (а) и общий вид (б) трёхвального двухконтурного турбореактивного двигателя (ДТРД): 1 - вход воздуха во внешний контур; 2 - вход воздуха во внутренний контур; 3 - лопатки вентилятора; 4 и 41 - компрессор и турбина низкого давления; 5-51 -компрессор и турбина высокого давления; 6 - камера сгорания; 7 - турбина привода вентилятора; 8 - реактивное сопло.

Турбореактивный двигатель         
Турбореактивный двигатель (здесь и далее — ТРД) — газотурбинный двигатель, в котором химическая энергия топлива преобразуется в кинетическую энергию струй газов, вытекающих из реактивного сопла. Основная область применения — авиация.
ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ         
(ТРД) , турбокомпрессорный двигатель, в котором тяга создается прямой реакцией потока сжатых газов, вытекающих из сопла. Разновидность турбореактивных двигателей - турбореактивный двухконтурный двигатель.
Турбореактивный двигатель         
(ТРД)

авиационный Газотурбинный двигатель, в котором тяга создаётся струей газов, вытекающих из реактивного сопла. ТРД применяются на сверхзвуковых самолётах как маршевые двигатели либо как подъёмные двигатели на самолётах вертикального взлёта и посадки. Атмосферный воздух, поступающий в ТРД при полёте, сжимается в Воздухозаборнике и далее в Турбокомпрессоре. Сжатый воздух подаётся в камеру сгорания, в которую впрыскивается жидкое химическое топливо (обычно авиационный керосин). Образовавшиеся при сгорании газы частично расширяются в турбине, вращающей компрессор; окончательное расширение газов происходит в реактивном сопле. Тяга ТРД может быть значительно увеличена (примерно на 30-40\%) путём дополнительного сжигания топлива в форсажной камере (См. Форсажная камера), расположенной между турбиной и реактивным соплом. Для увеличения диапазона устойчивой работы компрессора ТРД и ТРД с форсажной камерой могут выполняться по двухвальной (двухкаскадной) схеме, при которой турбокомпрессор составляется из двух механически не связанных последовательных каскадов. Перспективно использование ТРД на первых ступенях воздушно-космических самолётов (См. Воздушно-космический самолёт). См. также Авиационный двигатель.

В. И. Бакулев.

Принципиальная схема двухвального турбореактивного двигателя с форсажной камерой для сверхзвуковых самолетов: 1 - воздухозаборник; 2 - осевой компрессор; 3 - камера сгорания; 4 - турбина; 5 - форсажная камера; 6 - реактивное сопло.

ТУРБОРЕАКТИВНЫЙ ДВУХКОНТУРНЫЙ ДВИГАТЕЛЬ         
ЭТО ВОЗДУШНЫЙ ДВИГАТЕЛЬ, В КОТОРОМ ВОЗДУХ СЖИМАЕТСЯ НАГНЕТАТЕЛЕМ ПЕРЕД СЖИГАНИЕМ В НЁМ ТОПЛИВА, А НАГНЕТАТЕЛЬ ПРИВОДИТСЯ В ДВИЖЕНИЕ ГАЗОВ
Газотурбинные двигатели; ТРДДФ; ТВВД; ТВаД; ТРДФ; Турбовальный двигатель; Турбореактивный двухконтурный двигатель; Турбокомпрессорный двигатель; Турбовальные двигатели
(ТРДД) , воздушно-реактивный двигатель, в котором поступающий в него воздух делится на 2 потока, проходящих через внутренние и внешние контуры. Внутренний контур - турбореактивный двигатель, внешний - кольцевой канал с вентилятором, создающий дополнительный воздушный поток через самостоятельное или общее реактивное сопло. ТРДД экономичнее обычного турбореактивного на дозвуковых скоростях, менее шумный.
Турбокомпрессорный двигатель         
ЭТО ВОЗДУШНЫЙ ДВИГАТЕЛЬ, В КОТОРОМ ВОЗДУХ СЖИМАЕТСЯ НАГНЕТАТЕЛЕМ ПЕРЕД СЖИГАНИЕМ В НЁМ ТОПЛИВА, А НАГНЕТАТЕЛЬ ПРИВОДИТСЯ В ДВИЖЕНИЕ ГАЗОВ
Газотурбинные двигатели; ТРДДФ; ТВВД; ТВаД; ТРДФ; Турбовальный двигатель; Турбореактивный двухконтурный двигатель; Турбокомпрессорный двигатель; Турбовальные двигатели

Газотурбинный двигатель. Применяемые в авиации Т. д. разделяются на турбовинтовые двигатели (См. Турбовинтовой двигатель), в которых основная тяга создаётся воздушным винтом, и турбореактивные двигатели (См. Турбореактивный двигатель), в которых тяга создаётся струей газов, вытекающих из реактивного сопла.

ТУРБОКОМПРЕССОРНЫЙ ДВИГАТЕЛЬ         
ЭТО ВОЗДУШНЫЙ ДВИГАТЕЛЬ, В КОТОРОМ ВОЗДУХ СЖИМАЕТСЯ НАГНЕТАТЕЛЕМ ПЕРЕД СЖИГАНИЕМ В НЁМ ТОПЛИВА, А НАГНЕТАТЕЛЬ ПРИВОДИТСЯ В ДВИЖЕНИЕ ГАЗОВ
Газотурбинные двигатели; ТРДДФ; ТВВД; ТВаД; ТРДФ; Турбовальный двигатель; Турбореактивный двухконтурный двигатель; Турбокомпрессорный двигатель; Турбовальные двигатели
авиационный газотурбинный двигатель, в котором сжатие поступающего в камеру сгорания воздуха осуществляется компрессором. Различают турбовинтовые и турбореактивные турбокомпрессорные двигатели.
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ         
ЭТО ВОЗДУШНЫЙ ДВИГАТЕЛЬ, В КОТОРОМ ВОЗДУХ СЖИМАЕТСЯ НАГНЕТАТЕЛЕМ ПЕРЕД СЖИГАНИЕМ В НЁМ ТОПЛИВА, А НАГНЕТАТЕЛЬ ПРИВОДИТСЯ В ДВИЖЕНИЕ ГАЗОВ
Газотурбинные двигатели; ТРДДФ; ТВВД; ТВаД; ТРДФ; Турбовальный двигатель; Турбореактивный двухконтурный двигатель; Турбокомпрессорный двигатель; Турбовальные двигатели
(ГТД) , тепловой двигатель, в котором энергия газовоздушной смеси, получаемой при сгорании топлива в камере сгорания, преобразуется в механическую работу с помощью газовой турбины. Применяется в основном на ТЭЦ для привода электрогенераторов, в качестве двигателей транспортных машин, силовых установок судов.
Газотурбинный двигатель         
ЭТО ВОЗДУШНЫЙ ДВИГАТЕЛЬ, В КОТОРОМ ВОЗДУХ СЖИМАЕТСЯ НАГНЕТАТЕЛЕМ ПЕРЕД СЖИГАНИЕМ В НЁМ ТОПЛИВА, А НАГНЕТАТЕЛЬ ПРИВОДИТСЯ В ДВИЖЕНИЕ ГАЗОВ
Газотурбинные двигатели; ТРДДФ; ТВВД; ТВаД; ТРДФ; Турбовальный двигатель; Турбореактивный двухконтурный двигатель; Турбокомпрессорный двигатель; Турбовальные двигатели
(ГТД)

тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Рабочий процесс ГТД может осуществляться с непрерывным сгоранием топлива при постоянном давлении или с прерывистым сгоранием топлива при постоянном объёме.

В 1791 английский изобретатель Дж. Барбер впервые предложил идею создания ГТД с Газогенератором, поршневым Компрессором, камерой сгорания (См. Камера сгорания) и газовой турбиной (См. Газовая турбина). Русский инженер П. Д. Кузьминский в 1892 разработал проект, а в 1900 построил ГТД со сгоранием топлива при постоянном давлении, предназначенный для небольшого катера. В этом ГТД была применена многоступенчатая газовая турбина. Испытания не были завершены из-за смерти Кузьминского. В 1900-04 немецкий инженер Ф. Штольце пытался создать ГТД, но неудачно. В 1906 французский инженер Р. Арманго и Ш. Лемаль построили ГТД, работавший на керосине, со сгоранием топлива при постоянном давлении, но из-за низкого кпд он не получил промышленного применения. В 1906 русский инженер В. В. Караводин спроектировал, а в 1908 построил бескомпрессорный ГТД с 4 камерами прерывистого сгорания и газовой турбиной, который при 10 000 об/мин развивал мощность 1,2 квт (1,6 л. с.). В 1908 по проекту немецкий инженера Х. Хольцварта был построен ГТД прерывистого горения. К 1933 кпд ГТД с прерывистым горением составлял 24\%, однако они не нашли широкого промышленного применения. В России в 1909 инженер Н. В. Герасимов получил патент на ГТД, который был использован им для создания реактивной тяги (турбореактивный ГТД); в 1913 М. Н. Никольской спроектировал ГТД мощностью 120 квт (160 л. с.) с трёхступенчатой газовой турбиной; в 1923 В. И. Базаров предложил схему ГТД, близкую к схемам современных турбовинтовых двигателей; в 1930 В. В. Уваров при участии Н. Р. Брилинга спроектировал, а в 1936 построил ГТД с центробежным компрессором. В 30-е гг. большой вклад в создание авиационных ГТД внесли советский конструктор А. М. Люлька (ныне академик АН СССР), английский изобретатель Ф. Уиттл, немецкий инженер Л. Франц и др. В 1939 в Швейцарии был построен и испытан ГТД мощностью 4000 квт (5400 л. с.). Его создателем был словацкий учёный А. Стодола. В 1939 в Харькове, в лаборатории, руководимой В. М. Маковским, изготовлен ГТД мощностью 736 квт (1000 л. с.). В качестве топлива использован газ, получаемый при подземной газификации угля. Испытания этого ГТД в Горловке были прерваны Великой Отечественной войной. Большой вклад в развитие и совершенствование ГТД внесли советские учёные и конструкторы: А. Г. Ивченко, В. Я. Климов, Н. Д. Кузнецов, И. И. Кулагин, Т. М. Мелькумов, А. А. Микулин, Б. С. Стечкин, С. К. Туманский, Я. И. Шнеэ, Л. А. Шубенко-Шубин и др. За рубежом в 40-е гг. над созданием ГТД работали фирмы "Юнкерс", "БМВ" (Германия), "Бристол Сидли", "Роллс-Ройс" (Великобритания), "Дженерал электрик" и "Дженерал моторс" (США), "Рато" (Франция) и др.

Наибольшее промышленное применение получили ГТД с непрерывным сгоранием топлива при постоянном давлении. В таком ГТД (рис. 1) сжатый атмосферный воздух из компрессора поступает в камеру сгорания, туда же подаётся топливо, которое, сгорая, нагревает воздух; затем в газовой турбине энергия газообразных продуктов сгорания преобразуется в механическую работу, большая часть которой расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на приводимый агрегат. Работа, потребляемая этим агрегатом, является полезной работой ГТД.

Полезная работа Le, отнесённая к 1 кг рабочего тела, равна разности между работой Lt развиваемой турбиной при расширении в ней газа, и работой Lk, расходуемой компрессором на сжатие в нём воздуха. Графически рабочий цикл ГТД может быть представлен в PV-диаграмме, где Р - давление, V - объём (рис. 2). Чем выше кпд компрессора и турбины, тем меньше LK и больше LT, т. е. полезная работа увеличивается. Повышение температуры газа перед турбиной также способствует росту полезной работы L1c (линия 3'4' на рис. 2). Экономичность ГТД характеризуется его эффективным кпд, который представляет собой отношение полезной работы к количеству тепла, затраченного на создание этой работы.

В современных ГТД кпд компрессоров и турбин соответственно составляет 0,88-0,9 и 0,9-0,92. температура газа перед турбиной в транспортных и стационарных ГТД составляет 1100-1200 К, а в авиационных достигает 1600 К. Достижение таких температур стало возможным благодаря изготовлению деталей ГТД из жаропрочных материалов и применению охлаждения его элементов. При достигнутом совершенстве проточной части и температуре газов 1000 К кпд двигателя, работающего по простейшей схеме, не превышает 25\%. Для повышения кпд тепло, содержащееся в выходящем из турбины газе, используется в рабочем цикле ГТД для подогрева сжатого воздуха, поступающего в камеру сгорания. Теплообмен между отходящими газами и сжатым воздухом, поступающим в камеру сгорания, происходит в регенеративных теплообменниках, а рабочий процесс ГТД, в котором утилизируется тепло выходящих из турбины газов, называется регенеративным. Повышению кпд способствуют также подогрев газа в процессе его расширения в турбине, совместно с использованием тепла выходящих газов, и охлаждение воздуха в процессе его сжатия в компрессоре (рис. 3). При этом полезная работа возрастает благодаря увеличению работы Lm развиваемой турбиной, и уменьшению работы LK, потребляемой компрессором. Схема такого ГТД в 30-е гг. была предложена советским учёным Г. И. Зотиковым. Компрессор и турбина низкого давления находятся на одном валу, который не связан с валом привода, например, генератора, гребного винта. Их частота вращения может изменяться в зависимости от режима работы, что существенно улучшает экономичность ГТД при частичных нагрузках.

ГТД могут работать на газообразном топливе (природном газе, попутных и побочных горючих газах, газогенераторных газах, газах доменных и сажевых печей и подземной газификации); на жидком топливе (керосине, газойле, дизельном топливе, мазуте); твёрдом топливе (угольной и торфяной пыли). Тяжёлые жидкие и твёрдые топлива находят применение в ГТД, работающих по полузамкнутому и замкнутому циклу (рис. 4). В ГТД замкнутого цикла рабочее тело после совершения работы в турбине не выбрасывается, а участвует в следующем цикле. Такие ГТД позволяют увеличивать единичную мощность и использовать в них ядерное топливо. ГТД нашли широкое применение в авиации (см. Авиационный двигатель) в качестве основных двигателей силовых установок самолётов, вертолётов, беспилотных летательных аппаратов и т. п. ГТД используют на тепловых электростанциях для привода электрогенераторов; на передвижных электростанциях, например в энергопоездах; для привода компрессоров (воздушных и газовых) с одновременной выработкой электрической и тепловой энергии в нефтяной, газовой, металлургической и химической промышленности; в качестве тяговых двигателей газотурбовозов, автобусов, легковых и грузовых автомобилей, гусеничных тракторов, танков; как силовые установки кораблей, катеров, подводных лодок и для привода вспомогательных машин и механизмов (лебёдок, насосов и др.); на объектах военной техники в качестве энергетических и тяговых силовых установок. Область применения ГТД расширяется. В 1956 мощность ГТД во всём мире составила 900 Мвт, к 1958 она превысила 2000 Мвт, а к началу 1968 достигла 40 000 Мвт (без авиации и военной техники). Наибольшая единичная мощность выпускаемых в СССР ГТД составляет 100 Мвт (1969). Достигнутый эффективный кпд двигателей - 35\%.

Развитие ГТД идёт по пути совершенствования его элементов (компрессора, турбины, камеры сгорания, теплообменников и др.), повышения температуры и давления газа перед турбиной, а также применения комбинированных силовых установок с паровыми турбинами и свободнопоршневыми генераторами газа. Эксплуатация таких установок в стационарной энергетике и на транспорте показала, что при утилизации тепла отходящих газов и высоком совершенстве основных элементов их эффективный кпд достигает 42-45\%.

Лит.: Бикчентай Р. Н., Лоноян Г. С., Поршаков Б. П., Применение газотурбинных установок в промышленности, М., 1959; Уваров В. В. и Чернобровкин А. П., Газовые турбины, М., 1960; Шнеэ Я. И., Газовые турбины, М., 1960; Основы проектирования и характеристики газотурбинных двигателей, [пер. с англ.], М., 1964; Газотурбинные установки. Атлас конструкций и схем, М., 1967; Simmons С. R., Gas turbine manual, L., 1968.

См. также лит. при ст. Авиационная газовая турбина.

С. З. Копелев.

Рис. 1. Газотурбинный двигатель: 1 - центробежный компрессор; 2 - камера сгорания; 3 - топливная форсунка; 4 - сопловой аппарат; 5 - рабочее колесо турбины; 6 - выхлопной патрубок.

Рис. 2. Рабочий цикл газотурбинного двигателя в PV-диаграмме: 1РНР22 - LК; 4РНР23 - LТ; 4 123 - Lе; 411231 - L12.

Рис. 3. Схема газотурбинного двигателя с регенерацией тепла, охлаждением воздуха в процессе сжатия и подогревом газа в процессе расширения: 1 - пусковой двигатель; 2, 3, 4 - компрессоры низкого, среднего и высокого давления; 5 - камера сгорания; 6, 7 - турбины высокого и низкого давления; 8 - регенератор; 9 - охладитель воздуха.

Рис. 4. Схема газотурбинного двигателя, работающего по замкнутому циклу: 1 - поверхностный нагреватель; 2 - турбина; 3 - компрессор; 4 - охладитель; 5 - регенератор; 6 - аккумулятор воздуха; 7 - вспомогательный компрессор.

Газотурбинный двигатель         
ЭТО ВОЗДУШНЫЙ ДВИГАТЕЛЬ, В КОТОРОМ ВОЗДУХ СЖИМАЕТСЯ НАГНЕТАТЕЛЕМ ПЕРЕД СЖИГАНИЕМ В НЁМ ТОПЛИВА, А НАГНЕТАТЕЛЬ ПРИВОДИТСЯ В ДВИЖЕНИЕ ГАЗОВ
Газотурбинные двигатели; ТРДДФ; ТВВД; ТВаД; ТРДФ; Турбовальный двигатель; Турбореактивный двухконтурный двигатель; Турбокомпрессорный двигатель; Турбовальные двигатели
Газотурбинный двигатель (ГТД) — это воздушный двигатель, в котором воздух сжимается нагнетателем перед сжиганием в нём топлива, а нагнетатель приводится в движение газовой турбиной, использующей энергию нагретых таким образом газов. Двигатель внутреннего сгорания с термодинамическим циклом Брайтона.

Википедия

Турбореактивный двигатель

Турбореактивный двигатель (здесь и далее — ТРД) — газотурбинный двигатель, в котором химическая энергия топлива преобразуется в кинетическую энергию струй газов, вытекающих из реактивного сопла. Основная область применения — авиация. Механической основой любого ТРД всегда является турбокомпрессор.